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Abstract

Iterated improved reduced system (IIRS) technique is a model reduction (or condensation) method by
repeatedly updating a transformation matrix. An improvement on this dynamic condensation technique is
proposed in this paper to modify the iterative transformation matrix and achieve faster convergence.
Meanwhile, connection between the present algorithm and the subspace iteration method (SIM) is
demonstrated. A proof of the convergence property is also presented. Applications of the method to two
numerical examples have demonstrated that the proposed method can obtain the lowest eigensolutions of
structures more accurately and efficiently, as compared with the current IIRS.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the structural analysis with the finite element (FE) method, a very large number of degrees of
freedom (d.o.f.s) (several hundreds or thousands) are usually required to describe the structure
accurately. In this situation, it is often necessary to reduce d.o.f.s for a variety of engineering and
mechanical problems [1]. For example, although many eigensolution algorithms exist, model
reduction method (or condensation, economization) is still an efficient technique to give fast
computation of some lowest natural frequencies and corresponding mode shapes of large
structures [2–7]. In recent years, it has also been used in the experimental modal analysis and
related fields [8,9] since the number of measured points in experiments is much less than that of
d.o.f.s in the FE analysis and thus it is necessary to reduce the complete system matrices to the size
of the experimental model or expand the measured mode shapes to the full size of the FE model.

ARTICLE IN PRESS

*Corresponding author. Tel.: +65-6790-4049; fax: +65-6791-1975.

E-mail addresses: myxia@ntu.edu.sg (Y. Xia), mrmlin@ntu.edu.sg (R. Lin).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00188-3



The strategy of model reduction in solving eigenproblem is to remove some d.o.f.s (called
slaves) of the original FE model and retain a much smaller set of d.o.f.s (called masters), then to
solve the eigenfunction of the reduced model and approximate the eigensolutions of the original
model. The pivot task of various reduction methods is to estimate the transformation matrix
between the mode shapes corresponding to the masters and those to the slaves. Guyan [2] and
Irons [3] firstly proposed the static condensation technique nearly 40 years ago, which neglects the
inertia terms of the slavery d.o.f.s. Later some dynamic approaches were proposed to increase the
accuracy of the condensation method. For example, Paz [4] studied Guyan’s method with a
shifted eigenvalue; O’Callahan [5] proposed the improved reduced system (IRS) by adding an
extra term in the transformation matrix of Guyan’s method.

Recently some iterative dynamic schemes have been developed which update a transformation
matrix repeatedly until the eigenpairs meet the required precision. In particular, Friswell et al. [6]
proposed an iterated IRS (IIRS) technique and the convergence was proved later [10].
Unfortunately, the convergence speed of this method cannot be comparable to that of the
subspace iteration method (SIM), a commonly used algorithm in the structural community. Even
some improvements have been made to increase the convergence [7], the convergence property has
not been proved so far. Dependence on the master selection also prevents this kind of method
from becoming a more popular eigensolver in engineering.

In this paper, an improvement on the IIRS is presented by modifying the iterative formula of
the transformation matrix. We will demonstrate that this modification is equivalent to the
standard SIM. The convergence proof is also given, in a similar way to that of Friswell et al. [10].
The effectiveness of this improvement is demonstrated by applications to two numerical examples.

2. Iterated improved reduced system (IIRS) method

The generalized eigenvalue problem of a system with N d.o.f.s is described as follows, in the
block form, according to the chosen master d.o.f.s (retained) and slavery d.o.f.s (removed),

Kmm Kms

KT
ms Kss

" #
Umm

Usm

" #
¼

Mmm Mms

MT
ms Mss

" #
Umm

Usm

" #
Lmm; ð1Þ

where K and M are the N � N symmetric stiffness and mass matrices; U consists of the mass-
normalized eigenvectors and L is a diagonal matrix containing corresponding eigenvalues, li ði ¼
1; 2;y;mÞ; on the diagonal. Only the first m modes are included in the above equation. The
subscripts ‘‘m’’ and ‘‘s’’ represent the master and slave d.o.f.s, respectively, and the superscript
‘‘T’’ denotes the transpose of the matrix. The sizes of the master and slave d.o.f.s are assumed to
be m and s with m þ s ¼ N: Without loss of generality, the eigenvalues are arranged in ascending
order, i.e., l1pl2p?plm: From the second set of the above equation,

KT
msUmm þ KssUsm ¼MT

msUmmLmm þMssUsmLmm: ð2Þ

Usm hence can be expressed as

Usm ¼ �K�1
ss K

T
msUmm þ K�1

ss MT
msUmmLmm þMssUsmLmm

� �
: ð3Þ
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Let

Usm ¼ tUmm; ð4Þ

where t is the transformation matrix between Umm and Usm, which takes the form of

t ¼ tG þ K�1
ss MT

ms þMsst
� �

UmmLmmU�1
mm; ð5Þ

where tG ¼ �K�1
ss K

T
ms and subscript ‘‘G’’ represents the item of Guyan technique thereafter. Then

the transformation between the master d.o.f.s and the complete set of d.o.f.s becomes

U ¼
Umm

Usm

" #
¼

Imm

t

" #
Umm ¼ TUmm; ð6Þ

where Imm is the unit matrix of size m � m:
Substituting Eq. (6) into Eq. (1) and pre-multiplying TT, one can obtain a reduced eigenvalue

problem of order m:

KRUmm ¼MRUmmLmm; ð7Þ

where KR=T
T
KT andMR=T

T
MT are the reduced stiffness and mass matrices. It shows that the

eigenvalues of the reduced system are exactly the lowest m eigenvalues of the initial system and the
associated eigenvectors are the lowest m eigenvectors of the initial system in the corresponding
master d.o.f.s. The complete eigenvectors of the initial structure can be recovered by Eq. (6).
From Eq. (7), one has

UmmLmmU�1
mm ¼M�1

R KR: ð8Þ

Substituting Eq. (8) into Eq. (5), we can get

t ¼ tG þ K�1
ss MT

ms þMsst
� �

M�1
R KR: ð9Þ

Since t in Eq. (9) is implicit and cannot be directly solved, Friswell et al. [9] proposed the IIRS
technique in which the iterative scheme is

tðkÞ ¼ tG þ K�1
ss MT

ms þMsst
ðk�1Þ� �

M
ðk�1Þ
R

h i�1

K
ðk�1Þ
R ; ð10aÞ

TðkÞ ¼
Imm

tðkÞ

" #
; ð10bÞ

K
ðkÞ
R ¼ TðkÞ� �T

KTðkÞ; ð11aÞ

M
ðkÞ
R ¼ TðkÞ� �T

MTðkÞ; ð11bÞ

where the superscript k denotes the kth (kX2) iteration. When k ¼ 1; t(1)=tG, which is right
Guyan technique; and when k ¼ 2; it is equivalent to the standard IRS method. The lowest m

eigenvalues and the associated eigenvectors after kth iteration are estimated by solving the
generalized eigenproblem of the reduced system K

ðkÞ
R ;MðkÞ

R

	 

:

K
ðkÞ
R UðkÞ

m ¼M
ðkÞ
R UðkÞ

m LðkÞ
m : ð12Þ
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3. The present improvement of IIRS

In this part, we present a modification of the current IIRS and demonstrate its connection with
the standard SIM, one of the most powerful and popular technique in the structural community.

We rewrite Eq. (5) as

t ¼ tG þ td ; ð13aÞ

td ¼ K�1
ss MT

ms þMsst
� �

UmmLmmU�1
mm ð13bÞ

and

T ¼
Imm

t

" #
¼

Imm

tG þ td

" #
¼ TG þ

0

td

" #
: ð14Þ

Substituting Eq. (14) into KR=T
T
KT, one can get the reduced stiffness matrix

KR ¼ TG þ
0

td

" # !T

K TG þ
0

td

" # !

¼TT
GKTG þ 0 tTd

� � Kmm Kms

KT
ms Kss

" #
Im

tG

" #

þ Im tTG
� � Kmm Kms

KT
ms Kss

" #
0

td

" #
þ 0 tTd
� � Kmm Kms

KT
ms Kss

" #
0

td

" #

¼KG þ tTd KT
ms þ KsstG

� �
þ Kms þ tTGKss

� �
td þ tTdKsstd : ð15Þ

Noting KT
ms þ KsstG ¼ KT

ms � KssK
�1
ss K

T
ms ¼ 0 and similarly Kms þ tTGKss ¼ 0; the above equation

becomes

KR ¼ KG þ tTdKsstd : ð16Þ

Similarly we can obtain the reduced mass matrix as

MR ¼MG þ tTd MT
ms þMsstG

� �
þ Mms þ tTGMss

� �
td þ tTdMsstd : ð17Þ

Therefore, Eq. (7) can be rewritten as

0 ¼KRUmm �MRUmmLmm ¼ KG þ tTdKsstd
� �

Umm

� MG þ tTd MT
ms þMsstG

� �
þ Mms þ tTGMss

� �
td þ tTdMsstd

� �
UmmLmm: ð18Þ

On the right-hand side of the above equation, td of the second term is substituted by Eq. (13b),

tTdKsstdUmm ¼ tTdKss K
�1
ss MT

ms þMsstG
� �

þ K�1
ss Msstd

� �
UmmLmm

¼ tTd MT
ms þMsstG

� �
UmmLmm þ tTdMsstdUmmLmm: ð19Þ

Substituting Eq. (19) into Eq. (18) and removing the identical items, one can get

0 ¼KGUmm � MG þ Mms þ tTGMss

� �
td

� �
UmmLmm

¼KGUmm �MdUmmLmm; ð20Þ
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where

Md ¼MG þ Mms þ tTGMss

� �
td ¼ TT

GMTG þ TT
GM

0

td

" #
¼ TT

GMT: ð21Þ

Therefore, from Eq. (20), we can get

UmmLmmU�1
mm ¼M�1

d KG ð22Þ

and substitute it into Eq. (13),

t ¼ tG þ K�1
ss MT

ms þMsst
� �

M�1
d KG: ð23Þ

This leads to a modification of the iterative scheme, in which the formulae are

tðkÞ ¼ tG þ K�1
ss MT

ms þMsst
ðk�1Þ� �

M
ðk�1Þ
d

h i�1

KG; ð24aÞ

TðkÞ ¼
Imm

tðkÞ

" #
; ð24bÞ

M
ðk�1Þ
d ¼MG þ Mms þ tTGMss

� �
t
ðk�1Þ
d ¼ TT

GMT
ðk�1Þ

¼ Mmm þMmst
ðk�1Þ� �

þ tTG MT
ms þMsst

ðk�1Þ� �
: ð25Þ

Eqs. (11) and (12) are still used to estimate the lowest m eigenvalues and the associated
eigenvectors:

K
ðkÞ
R ¼ TðkÞ� �T

KTðkÞ; ð11aÞ

M
ðkÞ
R ¼ TðkÞ� �T

MTðkÞ ¼ Mmm þMmst
ðkÞ� �

þ tðkÞ
� �T

MT
ms þMsst

ðkÞ� �
; ð11bÞ

K
ðkÞ
R UðkÞ

m ¼M
ðkÞ
R UðkÞ

m LðkÞ
m : ð12Þ

The convergence of the present method will be proved later. The advantage of this modification
over the IIRS will be demonstrated with two numerical examples. In the computational cost point
of view, the present method spends only a little more in one iteration since Eq. (24) consumes
similar computation as Eqs. (10) and (25) can be simply obtained with the interim results that in
forming Eq. (11b). However, as the present method converges faster than the IIRS and needs less
iterations to achieve similar accuracy, the present method takes much less computation in total
than the latter, which will be demonstrated in the later examples.

Friswell et al. [11] found that the IIRS is very closely related but not exactly equivalent to the
standard SIM. Here we show that the present improvement is exactly identical to the SIM, which
implies its advantage over IIRS.

First we briefly introduce the standard SIM [12] for comparison. Assume Xðk�1Þ; Pðk�1Þ� �
are

the estimated first m eigenpairs of the initial system after ðk � 1Þth (kX2) iteration, a new
subspace %X

ðkÞ
is obtained by simultaneous inverse

K %X
ðkÞ ¼MXðk�1ÞPðk�1Þ: ð26Þ
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Then the best approximation of eigenpairs in the basis of %X
ðkÞ

is achieved through Rayleigh–Ritz
analysis [12]:

%X
ðkÞ

h iT
K %X

ðkÞ
QðkÞ ¼ %X

ðkÞ
h iT

M %X
ðkÞ
QðkÞPðkÞ; ð27Þ

where QðkÞ; PðkÞ� �
are the eigenpairs of the reduced system spanned by the Ritz vector %X

ðkÞ
; and

the new eigenvectors, after kth iteration, are

XðkÞ ¼ %X
ðkÞ
QðkÞ: ð28Þ

Back to the present method, assume Uðk�1Þ
mm ;Lðk�1Þ

mm

� �
are the calculated eigensolutions of the

reduced system after ðk � 1Þth iteration, an interim matrix YðkÞ satisfies

KGY
ðkÞ ¼M

ðk�1Þ
d Uðk�1Þ

mm Lðk�1Þ
mm : ð29Þ

YðkÞ is non-singular as long as Uðk�1Þ
mm and Lðk�1Þ

mm are not. Right-multiplying YðkÞ in both sides of
Eq. (24a) and substituting Eq. (29) into it, we can get

KT
ms þ Ksst

ðkÞ� �
YðkÞ ¼ MT

ms þMsst
ðk�1Þ� �

Uðk�1Þ
mm Lðk�1Þ

mm ; ð30Þ

or in compact form

KT
ms Kss

� � YðkÞ

tðkÞYðkÞ

" #
¼ MT

ms Mss

� � Uðk�1Þ
mm

tðk�1ÞUðk�1Þ
mm

" #
Lðk�1Þ

mm : ð31Þ

On the other hand, substituting M
ðk�1Þ
d in Eq. (25) into Eq. (29) and noting KG ¼ TT

GKTG ¼
Kmm þ KmstG gives

Kmm þ KmstGð ÞYðkÞ ¼ Mmm þMmst
ðk�1Þ� �

Uðk�1Þ
mm Lðk�1Þ

mm

þ tTG MT
ms þMsst

ðk�1Þ� �
Uðk�1Þ

mm Lðk�1Þ
mm : ð32Þ

Combining Eq. (30), the above one is

Kmm þ KmstGð ÞYðkÞ ¼ Mmm þMmst
ðk�1Þ� �

Uðk�1Þ
mm Lðk�1Þ

mm þ tTG KT
ms þ Ksst

ðkÞ� �
YðkÞ

¼ Mmm þMmst
ðk�1Þ� �

Uðk�1Þ
mm Lðk�1Þ

mm � KmsK
�1
ss KT

ms þ Ksst
ðkÞ� �
YðkÞ

¼ Mmm þMmst
ðk�1Þ� �

Uðk�1Þ
mm Lðk�1Þ

mm þ KmstG � Kmst
ðkÞ� �
YðkÞ: ð33Þ

Being removed the identical items from both sides, Eq. (33) is further simplified to

Kmm þ Kmst
ðkÞ� �
YðkÞ ¼ Mmm þMmst

ðk�1Þ� �
Uðk�1Þ

mm Lðk�1Þ
mm ; ð34Þ

or in compact form

Kmm Kms

� � YðkÞ

tðkÞYðkÞ

" #
¼ Mmm Mms

� � Uðk�1Þ
mm

tðk�1ÞUðk�1Þ
mm

" #
Lðk�1Þ

mm : ð35Þ

Combining Eqs. (31) and (35), one has

Kmm Kms

KT
ms Kss

" #
YðkÞ

tðkÞYðkÞ

" #
¼

Mmm Mms

MT
ms Mss

" #
Uðk�1Þ

mm

tðk�1ÞUðk�1Þ
mm

" #
Lðk�1Þ

mm ; ð36Þ
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or

K
YðkÞ

tðkÞYðkÞ

" #
¼M

Uðk�1Þ
mm

tðk�1ÞUðk�1Þ
mm

" #
Lðk�1Þ

mm ¼M
Uðk�1Þ

mm

Uðk�1Þ
sm

" #
Lðk�1Þ

mm : ð37Þ

Comparing Eq. (37) with Eq. (26), it is clear that they are exactly similar. In fact, if we define
Uðk�1Þ

mm

Uðk�1Þ
sm

h i
¼ Xðk�1Þ and Lðk�1Þ

mm ¼ Pðk�1Þ; the subspace YðkÞ

tðkÞYðkÞ

h i
of the present method is equivalent to

%X
ðkÞ

of the SIM. The only difference is that in SIM, %X
ðkÞ

is used as Ritz vector to perform

Rayleigh–Ritz analysis (Eq. (27)) rather than TðkÞ ¼ Imm

tðkÞ

h i
is used in the reduction methods

(Eqs. (11) and (12)). However, this will not cause any difference since YðkÞ

tðkÞYðkÞ

h i
¼ Imm

tðkÞ

h i
YðkÞ spans the

same subspace as TðkÞ ¼ Imm

tðkÞ

h i
does, when YðkÞ is not singular. Therefore, they give the same new

eigenpairs after the next ðkthÞ iteration.

4. Convergence of the present method

In this section, we will roughly prove that the present iterative formula for T(k) in the form of
Eq. (24a) converges to the actual T, in a similar way to that of Friswell et al. [10] in proving the
convergence of IIRS that takes form of Eqs. (10).

First we rewrite Eqs. (23) and (24) as

T ¼ TG þ SMTM�1
d KG; ð38Þ

TðkÞ ¼ TG þ SMTðk�1Þ M
ðk�1Þ
d

h i�1

KG; ð39Þ

where S is

S ¼
0 0

0 K�1
ss

" #
: ð40Þ

Define an error matrix

EðkÞ ¼ TðkÞ � T ¼ SM Tðk�1Þ M
ðk�1Þ
d

h i�1

�TM�1
d


 �
KG: ð41Þ

Similarly let Eðk�1Þ ¼ Tðk�1Þ � T; M
ðk�1Þ
d

h i�1

is expanded as the first order Taylor series in terms
of Eðk�1Þ;

M
ðk�1Þ
d

h i�1

¼ TT
GMT

ðk�1Þ� ��1
¼ TT

GM Tþ Eðk�1Þ� �� ��1

¼ Md þ TT
GME

ðk�1Þ� ��1
¼ Md IþM�1

d TT
GME

ðk�1Þ� �� ��1

E I�M�1
d TT

GME
ðk�1Þ� �

M�1
d ¼M�1

d �M�1
d TT

GME
ðk�1ÞM�1

d : ð42Þ
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Then by neglecting the high order of the error matrix,

Tðk�1Þ M
ðk�1Þ
d

h i�1

¼ Tþ Eðk�1Þ� �
M�1

d �M�1
d TT

GME
ðk�1ÞM�1

d

� �
ETM�1

d þ Eðk�1ÞM�1
d � TM�1

d TT
GME

ðk�1ÞM�1
d : ð43Þ

Substituting Eq. (43) into Eq. (41),

EðkÞ ¼ SM I� TM�1
d TT

GM
� �

Eðk�1ÞM�1
d KG: ð44Þ

Assume {Umj} ðj ¼ 1; 2;y;mÞ is the jth eigenvector corresponding to the master d.o.f.s (or the jth
eigenvector of the reduced system), from Eq. (20), we have

KG Umj

� �
¼ ljMd Umj

� �
; ð45Þ

Post-multiplying {Umj} on both sides of Eq. (44), it has

EðkÞ Umj

� �
¼ SM I� TM�1

d TT
GM

� �
Eðk�1Þ Umj

� �
lj: ð46Þ

The error vector Eðk�1Þ Umj

� �
can be written as a combination of the full eigenvectors, i.e.,

Eðk�1Þ Umj

� �
¼ U Zf g ¼ Um Us

� � Zm

Zs

( )
; ð47Þ

where U is the full eigenvector matrix of the original system, Um and Us store the first m and left s

eigenvectors, respectively; {Z} is a coefficient vector with size of N � 1 containing the
contribution from each eigenvector, and Zm, Zs are the contributions from Um and Us,
respectively. Substituting Eq. (47) into Eq. (46) gives

EðkÞ Umj

� �
¼ SM I� TM�1

d TT
GM

� �
Um Us

� � Zm

Zs

( )
lj: ð48Þ

In Eq. (48), it is reminded that Um=TUmm, and Md ¼ TT
GMT; therefore

I� TM�1
d TT

GM
� �

Um ¼ Um � TM�1
d TT

GMTUmm ¼ Um � TUmm ¼ 0: ð49Þ

This implies that in the ðk � 1Þth iteration, the contribution from the first m eigenvectors Um to
the error vector Eðk�1Þ Umj

� �
will disappear after one more iteration (kth iteration). Hence

Eq. (48) can be simplified as

EðkÞ Umj

� �
¼ SM I� TM�1

d TT
GM

� �
Us Zsf glj ¼ SM Us � TM�1

d TT
GMUs

� �
Zsf glj: ð50Þ

Again we suppose

TM�1
d TT

GMUs ¼ UC ¼ Um Us

� � Cm

Cs

" #
; ð51Þ

C is a coefficient matrix of size N � s; Cm and Cs are the corresponding components of C. Noting
the orthogonality of the eigenvectors, the below equation satisfies

UT
s MT ¼ UT

s MTUmmU�1
mm ¼ UT

s MUmU�1
mm ¼ 0: ð52Þ
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Then pre-multiply UT
s M in both sides of Eq. (51),

UT
s MT

� �
M�1

d TT
GMUs ¼ 0

¼ UT
s M Um Us

� � Cm

Cs

" #
¼ 0 Iss

� � Cm

Cs

" #
¼ Cs: ð53Þ

Therefore, Cs is a zero matrix. Combining Eqs. (50) and (51) gives

EðkÞ Umj

� �
¼S MUs �MUmCmð Þ Zsf glj

¼S KUsL�1
s � KUmL�1

mmCm

� �
Zsf glj

¼SK UsL�1
s � UmL�1

mmCm

� �
Zsf glj

¼
0 0

�ts Iss

" #
ljUsL�1

s � ljUmL�1
mmCm

� �
Zsf g

¼
0 0

�tG Iss

" #
ljUsL�1

s Zsf g þ lj

0

tGUmm � Usm

" #
L�1

m Cm Zsf g; ð54Þ

where Ls is a diagonal matrix containing the largest s eigenvalues, i.e., li (i ¼ m þ 1;m þ 2;y;N).
The right hand side of the above equation includes two terms. In the first term, all lj=li are less
than unity and thus ljUsL�1

s Zsf goUs Zsf g: The second term will be small in norm bacause the
expanded modes from static reduction should be close to the modes at the slave degrees of
freedom and as a result, the norm of the term (tGUmm � Usm) will be small. Therefore, the norm of
EðkÞ Umj

� �
will be much smaller than the norm Eðk�1Þ Umj

� �
; leading to convergence of the

method.

5. Numerical examples

Two structures are applied to illustrate the effectiveness and accuracy of the proposed
algorithm. It was found that the selection of master d.o.f.s certainly affects the convergence speed
or accuracy of the reduction methods. Some strategies have been studied in the master d.o.f.s
selection for condensation [13,14], sensor placement [15,16] or damage identification [17].
However, this is not the focus of the present paper. In this paper, the master d.o.f.s are selected as
those with relatively higher ratios ofMii/Kii (i ¼ 1; 2;y;N), as usual. This is similar to the way in
the SIM, in which the starting vectors are chosen as unit vectors with entries +1 at the d.o.f.s with
largest ratios ofMii/Kii [12]. When many d.o.f.s have identical values, which is common in the FE
analysis, we select the master d.o.f.s uniformly distributed such that their corresponding mode
shapes are linear independent as possible (or, it yields Umm well-conditioned and thus t ¼ UsmU�1

mm

can be iteratively approached in less iterations). It should be admitted that this is not the optimal
way in the convergence speed point of view, but the numerical examples will show that this
strategy can achieve a fast convergence for condensation methods.
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5.1. A portal frame

The first example is a one-span steel portal frame as shown in Fig. 1 [18]. The cross-section of the
beam is 40.50� 6.0mm2, and the columns 50.50� 6.0mm2. The mass density is 7.67� 103 kg/m3

and Young’s modulus 200.0GPa. The structure is modelled by 30 Euler–Bernoulli beam elements,
as shown in Fig. 1. Each node has three d.o.f.s (horizontal, vertical displacements and rotation)
and results in 87 d.o.f.s in total.

The lateral d.o.f.s of 8 points, as shown in Fig. 1 are chosen as master d.o.f.s. The full model
with the order of 87 is reduced to that of 8. The first eight natural frequencies to 6-digit precision,
which suffices most engineering purposes, obtained with the present and IIRS methods are listed
in Tables 1 and 2, respectively. For clearness, the values upon convergence are not listed in the
tables. The true values in the tables, which are treated as reference values for comparison purpose,
are computed using MATLAB5.3 [19].

It is reminded that the results of the first iteration are exactly those of Guyan technique and
those of the second iteration are standard IRS method, for both IIRS and present methods. The
tables demonstrate that Guyan reduction does not reproduce the modal frequencies of the original
system as expected. It also shows that IRS technique improves the results greatly especially for the
first three modes. Using the present method, the first three frequencies have achieved 6-digit
precision with one additional iteration. With a few more runs, the frequencies of modes 4–7
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Fig. 1. Finite element model of the steel frame and the master degrees of freedom.
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converge to the exact values consistently. In particular, modes 4,5,6 and 7 achieve 6-digit precision
after 4,6,7 and 8 iterations in total, respectively. Therefore, the present method is very powerful in
estimating the first a few modal frequencies. With the IIRS technique, the lower modes also
converge fast but the higher modes do slower than the present one, as shown in Table 2. Actually
modes 4,6,7 and 8 do not achieve the accuracy after 10 iterations. This example clearly
demonstrates that the present method improves the convergence speed of IIRS and the
computation cost is thus saved.

It is noted that the 8th natural frequency converges slowest. Detailed study finds that the ratio
of the 8th natural frequency to the 9th is as high as 0.86. To get an accurate value of mode 8, some
more iterations are needed. To avoid heavy computation, it is preferred to increase the number of
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Table 2

The first eight natural frequencies (Hz) of the frame obtained with IIRS method

Iteration Modes

1 2 3 4 5 6 7 8

1 4.693525 18.284524 28.997330 31.743911 66.929409 84.064750 93.537472 2055.324179

2 4.692759 18.220707 28.917160 31.465207 64.550780 76.822660 90.227493 164.111312

3 18.220703 28.917153 31.464892 64.505060 76.648132 90.091970 148.132151

4 31.464891 64.502684 76.639500 90.074388 143.102621

5 31.464891 64.502535 76.638719 90.071811 140.681521

6 31.464891 64.502525 76.638352 90.071422 139.514596

7 31.464891 64.502525 76.638025 90.071362 138.963704

8 31.464890 64.502525 76.637720 90.071353 138.699136

9 31.464890 64.502524 76.637435 90.071351 138.564220

10 31.464890 76.637167 90.071351 138.487919

True values 4.692759 18.220703 28.917153 31.464889 64.502524 76.629115 90.071342 137.524922

Table 1

The first eight natural frequencies (Hz) of the frame obtained with present technique

Iteration Modes

1 2 3 4 5 6 7 8

1 4.693525 18.284524 28.997330 31.743911 66.929409 84.064750 93.537472 2055.324179

2 4.692759 18.220707 28.917160 31.465207 64.550780 76.822660 90.227493 164.111312

3 18.220703 28.917153 31.464890 64.503756 76.637334 90.085887 146.873634

4 31.464889 64.502556 76.629519 90.072785 141.868482

5 64.502525 76.629133 90.071486 139.509284

6 64.502524 76.629116 90.071356 138.404140

7 76.629115 90.071343 137.907607

8 90.071342 137.690083

9 137.595937

10 137.555410

True values 4.692759 18.220703 28.917153 31.464889 64.502524 76.629115 90.071342 137.524922
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master d.o.f.s in the case rather than increase iteration number. Increasing the number of masters
will normally reduce the iteration number involved (as lj=lmþ1 becomes smaller), but also increase
the computational cost in each iteration. It is recommended that the size of masters is twice the
frequencies (or eigenvalues) required. For instance, in this example, the first 4 natural frequencies
converge very fast to the exact values with the chosen eight masters.

5.2. A cantilever plate

The second example is a cantilever plate as shown in Fig. 2. It is used here to verify the
computational efficiency of present method for a relatively large structure. The nominal
dimensions of the plate are 2000� 2000� 10mm. The Young’s modulus is 206GPa, the mass
density 7.80� 103 kg/m3 and the Possion ratio is 0.3. The structure is discretized into 20� 20=400
classical thin plate elements, resulting in 441 nodes and 1260 d.o.f.s in total. Each node has three
d.o.f.s, namely, deflection in Z direction and rotations around X - and Y -axis. The first 5 natural
frequencies and their associated eigenvectors are assumed to compute.

The master d.o.f.s are selected uniformly over the structure as shown in Fig. 2. The total
number is 10, twice the number of frequencies required, to reduce iteration number. To illustrate
the accuracy of the present method, 8-digit precision is used for frequencies. After 7 iterations, the
present method converges and the first 5 natural frequencies are listed in Table 3. It can be seen
that the present method can accurately predict the natural frequencies of the full structure with
just a few iterations. With the IIRS, however, modes 3, 4 and 5 do not achieve such accuracy even
after 20 iterations, which can be seen from Table 4.
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Fig. 2. Finite element model of the plate and the master degrees of freedom.
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After the eigensolutions of the full model have been computed, an error estimation is performed
via following criterion [12], for the ith approximated eigenpairs ð %Ui; %liÞ:

ei ¼
K %Ui � %liM %Ui

�� ��
2

K %Ui

�� ��
2

; ð55Þ

where jj
jj2 is Euclidean norm of the vector.
The errors of IIRS and present methods, as defined in Eq. (55), are compared in Fig. 3 with

respect to the iteration number used. Since the lower modes converge faster than higher ones, the
figure only shows the convergence of 4th and 5th modes for clearness. It clearly shows that
the present method converges much faster than IIRS does. After 10 iterations, the errors of the
eigensolutions with the present method are less than 10�8, but those of IIRS method are about
10�2. As expected, the convergence speed of mode 4 is faster than that of mode 5, in the present
method. But it is a bit abnormal that a reverse phenomenon happens for IIRS. This figure again
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Table 4

The first five natural frequencies (Hz) of the plate obtained with IIRS method

Iteration Modes

1 2 3 4 5

1 2.15180705 5.31056911 13.37957316 17.65512513 19.84993706

2 2.14781211 5.26386819 13.17819520 16.82681089 19.16743116

3 2.14781209 5.26386496 13.17745076 16.82487491 19.15630419

4 5.26386494 13.17743775 16.82480114 19.15572298

5 13.17743486 16.82478341 19.15566618

6 13.17743338 16.82477448 19.15565425

7 13.17743248 16.82476902 19.15565042

10 13.17743112 16.82476070 19.15564765

15 13.17743026 16.82475536 19.15564699

20 13.17742989 16.82475304 19.15564685

True values 2.14781209 5.26386494 13.17742910 16.82474801 19.15564676

Table 3

The first five natural frequencies (Hz) of the plate obtained with present method

Iteration Modes

1 2 3 4 5

1 2.15180705 5.31056911 13.37957316 17.65512513 19.84993706

2 2.14781211 5.26386819 13.17819520 16.82681089 19.16743116

3 2.14781209 5.26386494 13.17743492 16.82476860 19.15604247

4 13.17742911 16.82474807 19.15565839

5 13.17742910 16.82474801 19.15564703

6 19.15564677

7 19.15564676

True values 2.14781209 5.26386494 13.17742910 16.82474801 19.15564676
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demonstrates that the present reduction algorithm can predict the eigensolutions of the structure
effectively and accurately.

To compare the computational cost, the number of floating-point operations (flops) is counted
in which addition, subtraction, multiplication and division count one flop for real number. After
10 iterations, the present method numbers 5.02� 107 in total and IIRS 4.79� 107. Apart from the
computation consumed in the initialization and error estimation, the present method averagely
costs 4.25� 106 flops and IIRS 4.02� 106 in one iteration. But the slight additional computation
is worth spending since the convergence speed of the present method is improved significantly.

6. Conclusions and discussions

A new effective model reduction method has been developed for structural eigensolutions. This
technique modifies the current iterated IRS technique and is found equivalent to the widely used
SIM. The convergence of the method is mathematically verified.

The present algorithm has been applied to two practical examples. Numerical results have
showed that the proposed technique can accurately predict the frequencies and the mode shapes
of interest. As compared with the other commonly used condensation methods, such as the
iterated IRS, the proposed method converges much faster to the exact values especially for higher
modes and, therefore saves a great deal of computation. Due to mathematical complexity, the
inherent advantage of the present method over the IIRS is not rigorously proven but instead,
verified through extensive numerical simulations.

The convergence associated with the proposed method is mathematically verified. It is very
difficult to prove the convergence in an elegant mathematical sense and the proof given in this
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paper is not meant to be rigorous. Numerical examples show that the convergence speed of the
present method is fast, when the master subset is selected in the usual way and the number of the
master is twice that of the eigenvalues required. On the other hand, since the lowest eigenpairs
converge faster than those higher ones, similar to other eigensolvers, some acceleration strategies
such as shifting can be employed to improve computational efficiency. This will be further
investigated in future.
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